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ABSTRACT

A single digital pathology image can occupy over 10 gigabyié
hard disk space, rendering it dif cult to store, analyzeddrans-
mit. Though image compression provides a means of redubiag t
storage requirement, its effects on computer-aided dgigr{€AD)
and pathologist performance are not yet clear. In this woekaa-
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Compression algorithms are a common method for decreasing
the storage size of images. The ratio of an uncompressedzée s
to its compressed size is known as #@mpression ratio There
are two main methods of compressidasslesswhich are fully re-
versible but are limited by a low compression ratio, &y, which
achieve high compression ratios at the cost of reduced irgage
ity. In digital pathology, loss of image quality can advdysaffect

sess the impact of compression on the ability of a CAD system to ability of both a CAD system [3] and a pathologist [4] tafpem

detect carcinoma of the prostate (CaP) on histological@mext The
CAD algorithm proceeds as follows: Glands in the tissue age s
mented using a region-growing algorithm, and the size dfi géemnd
is extracted. A Markov prior (speci cally, a probabilistfairwise

Markov model) is employed to encourage nearby glands toesha

the same class (i.e. cancerous or non-cancerous). Fioalhger-
ous glands are aggregated into continuous regions usirgiande-
hull algorithm. We trained the CAD system on 28 images of whol
mount histology (WMH) and evaluated performance on 12 imag
compressed at 14 different compression ratios (a total 8fekper-
iments) using JPEG2000. Algorithm performance (measusétju
the under the receiver operating characteristic curvespimes rel-
atively constant for compression ratios ug tt?56, beyond which
performance degrades precipitously. For completenesdsoédrave
an expert pathologist view a randomly-selected set of cesgad
images from one of the whole mount studies and assign a con
dence measure as to their diagnostic delity. Pathologistdence
declined with increasing compression ratio as the infoionatec-
essary to diagnose the sample was lost, dropping from 1002 co
dence at ratid:64to 0% at ratiol:8192

1. INTRODUCTION

Digitized images of large tissue samples, such as wholeairtus-
tology (WMH) sections of the prostate, can constitute mbent10

e

analysis.

The majority of previous research into the impact of compres
sion of histological images relied on visual quality as nueed by a
Ipathologist. For example, Foran, et al. [4] determined tvitiom-
pression ratios were suitable for diagnosis using telepadly. To
our knowledge very few papers attempt to quantitatively sunea
the effects of compression on an automated system: Loped, e
[3] found that the differences in nuclei counts as performgdheir
automated system were not signi cantly affected by comgioesra-
tios of up to1:46.

In this work we evaluate the impact of JPEG2000 compression
on the ability of a computer-aided diagnosis (CAD) systend¢e
tect carcinoma of the prostate (CaP) on WMH histologicatisas.
The goals of this work are twofold: 1) To evaluate the ef caddy
JPEG2000 compression on WMH sections in the context of CAD
performance, and 2) to explore the robustness of our CAD-algo
rithm to different compression ratios at a speci ¢ magniice. Our
previously-developed CAD system [1] proceeds as follovisp3)
glands are segmented, Step 2) the segmented glands aiedlass
malignant or benign, and Step 3) the malignant glands arsatien
dated into continuous regions. The system was shown totdes#e
regions with a sensitivity of 88% and an accompanying fatss-p
tive rates of the 10% [1]. In the current study, we used a dat@lof
40 WMH images (28 training, 12 testing) to determine the sbbu
ness of the CAD algorithm to lossy compression. Our testai@b

GB of data. On a daily basis a large pathology lab may proces$2 WMH images were compressed via JPEG2000 at 14 different ra

hundreds of such studies. This volume of data presentsaerel-

lenges to digital pathology: 1) Storage becomes prohditiexpen-
sive. 2) Telepathology, the transmission of digital imagesr com-
puter networks, is untenable. 3) It becomes impossible tpl@m
sophisticated computer-aided diagnosis (CAD) systemsigMing

these issues requires a method for reducing image le sizkewdr

taining diagnostic delity [2].

This work was made possible via grants from the Wallace H.lt€ou
Foundation, New Jersey Commission on Cancer ResearchonisbiCan-
cer Institute Grant Nos. RO1CA136535-01, ARRA-NCI-3 R212&1861,
R21CA127186 RO3CA128081-01, and RO3CA143991-01, The&@dnsti-
tute of New Jersey, and the Life Science Commercializatiomardl.

tios (a total of 168 experiments) and evaluated for to deterthe
robustness of the CAD algorithm to lossy compression. Fan-co
pleteness we also perform a reader study, wherein a patbbleg
asked to provide a con dence measure as to the diagnostilityde
for different degrees of compression.

2. METHODOLOGY

2.1. Image Compression Algorithm

The JPEG2000 compression standard and coding system isia pop
lar wavelet-based algorithm capable of preserving vigyadircep-
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Fig. 1. JPEG2000 compression on (a) an original histopathologgerat (b)1:16, (c) 1:256, and (d)1:4096 compression ratios. Black
contours identify the cancer region in (a)-(d). The regibimterest shown in the lower-left quandrant on (a)-(d) hesrbmagni ed in (e)-(h)
to illustrate differences in gland detection and segmantatt different ratios. Shown in the bottom row are the ressof the CAD algorithm
[1] on the original (i) and compressed (j)-(limages, wilhidindicating cancerous glands and the red contour indigdbhe consolidated

region of cancerous glands. Results are fairly robust aaotitpression ratios greater thh®256. Note that performance decreases as a result

of compression effects at the gland level (h), where detedaf glands is impossible.

tive features while achieving high compression ratios carag to
alternative methods. An image is rst convolved with the @oh
Daubechies-Feauveau discrete wavelet transform to genarset
of coef cients, which are scalar-quantized to reduce th@amh of
data required to store the image. The quantization steprdites
the strength of the compression (i.e. the compression)rafibis

results in a set of subband levels representing differeptogma-
tions of the image; we choose the sixth subband level foryaisal
which retains a high amount of visual information from thigoral

image. Finally, the subband levels are divided into codeksdmf
64-by-64 pixels, which are each individually encoded. tigd be
noted that during this process, the height and width of thegedo

not change, but the amount of information used to represactt e

image is reduced signi cantly.

2.2. Prostate Cancer Detection and Classi cation

Figure 1(a) illustrates a prostate histological (tissuegtion. The
pinkish hue results from the H&E staining procedure. Theesup
imposed black line delimits the spatial extent of CaP asrdeted
by a pathologist. The numerous white regions are the glames,
i.e. cavities in the prostate through which uid ows. Ourtau
mated system identi es regions of CaP by leveraging twodgjial
properties: 1) cancerous glands (and hence their lumemd)téebe
smaller in cancerous than benign regions and 2) malignemigh
glands tend to be proximate to other malignant/benign gland

2.2.1. Gland Segmentation

Figure 2 illustrates the gland segmentation procedure. Xvaa the

We utilize the OpenJPEG implementation of the JPEG2000uminance channel of the digitized sectic@IE Lab color space),

standard to produce 14 different compression ratios, g¢ingra

where gland regions appear as contiguous, high intensiglgcir-

single image per compression operation. The compressimwsra cumscribed by sharp boundaries (Figure 2(a)). We convbleén-

ranged froml:1 (no compression) td:8192 (high compression).

age with a Gaussian kernel at multiple scales to generatgpheul

Examples of compression can be seen in Figure 1. The originamoothed images (Figure 2(b) illustrates one such imagke local
images are shown in Figure 1(a), along with subsequentligehig maxima (i.e. single pixel peaks) are considered to be luneatecs

compression ratios (Figures 1(b)-1(d), respectively).

(Figure 2(c)), which serve as seeds for a region-growingrétyn
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Fig. 2. Overview of the gland detection and segmentation proce

dure. The luminance channel (a) is convolved with a Gaudsian

nel to generate a smoothed image (b). Peaks in this imagesade u

to detect gland centers (c). A region-growing algorithmsediin
the unsmoothed image to extract gland size (d). Segmensatith
poor average edge strengths are discarded.

(Figure 2(d)). We brie y outline this algorithm. First deenthe

following: 1) current region(CR) is the set of pixels representing

the segmented region in the current step of the algorithntug)

rent boundary(CB) is the set of pixels that neighbor CR in an 8-

connected sense, but are not in CR, anth@rnal boundary(IB) is

the subset of pixels in CR that neighbor CB. The growing pilace
begins by initializing CR to a seed pixel assumed to lie witthie
gland. At each iteration CR expands by aggregating the pixéB

with the greatest intensity. CR and CB are updated, and theeps
continues. The algorithm terminates when the norm from the
seed to the next aggregated pixel exceeds a predetermimsthoid.

the product of the conditional probability (Y jX) and the prior
distribution P (X). The conditional probability models the area
of the glands, as cancerous glands tend to be smaller in tsae t
benign glands [5]. The prior distribution incorporates lha@ogical
tendency for cancerous/benign glands to appear near o#trer c
cerous/benign glands. More speci calll,(X ) is modeled using
probabilistic pairwise Markov model (PPMM) [1], a novel Ntax
prior which is both more exible and intuitive than typical dakov
priors (such as the Potts model). Both the conditional analr pr
distributions can be learned via training.

2.2.3. Gland Consolidation

Glands determined to be cancerous are consolidated intmaons
regions. To perform this consolidation we use a modi ed fasfn
the convex hull called distance hull or Dhull [1]. Unlike thenvex
hull, Dhull places a restriction on the maximum distanceseen
consecutive points on the hull, thus allowing the formatémon-
convex boundaries which can better conform to the true CgiBrrs.

3. EXPERIMENTAL SETUP AND EVALUATION
The dataset consists of 40 prostate histology sectionsestavith
hematoxylin and eosin (H&E), obtained from radical prostat
tomies at the University of Pennsylvania and Queens Urityers
in Canada. Each sample contains regions of CaP ranging in ma-
lignancy from Gleason scores six to eight, and is digitize. 25x
optical magni cation (8 m per pixel) using an Aperio slide scanner.
The CaP regions on each digitized sample are manually dedide
by a pathologist using a black contour in an image editor.

3.1. Experiment 1: Automated Cancer Detection via CAD

Twenty eight of the histological sections (uncompressesfewised
to train the CAD system described in Section 2.2. The remgitR
images were each compressed dk; 1:2; :::; 1:8192 yielding a
test set of 168 images. To assess system performance we tene
following measure: true positives (TP) indicate the arethefHSs
denoted as cancerous by both the pathologist and CAD, arildgim
we de ne true negatives (TN), false positives (FP), andefalega-

That is, theL; norm establishes a square bounding box about thdves (FN). From these we obtain two additional measurestrie

seed; the growing procedure terminates when the algorittemats
to add a pixel outside this box. During each iteration th@adgm
measures the boundary strength which is de ned as the awénag
tensity of the pixels in IB minus the average intensity of fiveels
in CB. After the growing procedure terminates, the regiothwine
greatest boundary strength is selected. If the boundaeyngtin is
below a predetermined signal-to-noise ratio, it is disedrd

2.2.2. Gland Classi cation

LettheseS=11;2;:::;Ngreference th&l segmented glandsin a
histological. Each gland has an associated a2  f ! 1;! 2q,

where! 1 and! , indicate malignancy and benignity, respectively.

The random variabl®s 2 R indicates the area of glarel Let X =

variablesX s andYs in aggregate. The state spaceXohndY are
the Cartesian products N andRP M.

We use maximuma posteriori (MAP) estimation to nd the
optimal X given the feature vectoy , i.e. we maximize thea
posteriori probability P (X jY ). This probability is proportional to

positive rate TP/(TP+FN) and the false positive rate FPAFR).

The performance of the CaP detection system with respedt to a
preceding measures is in uenced by the (user-supplied)giitity
that a gland is malignant (or one minus the probability itegign).
Varying this probability from zero to one yields a receiv@eoator
characteristic (ROC) curve. To arrive at a measure thatdspan-
dent of the prior probability we can calculate the total aneder
the ROC curve (AUC). Therefore, to evaluate the impact of com
pression ratio on the performance of the CaP detection rayste
choose to measure the AUC for each group of 12 images shéueng t
same compression ratio. This produces 14 total AUCs (onedici
compression ratio).

3.2. Experiment 2: Pathologist Reader Visual Inspection

An expert pathologist was instructed to state the con dendéeir
ability to identify the regions of CaP for a single whole-mbsec-
tion at 1.25x magni cation. The con dence measure rangesifO
to 100, with 100 being absolute certainty and O indicating db-
sence of diagnostic information. To prevent previouskwed im-



ages from in uencing subsequent con dence measures, tlagan
were considered serially from the most- to the least-cosgae.
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5. CONCLUDING REMARKS

The effects of lossy compression on the analysis of hisjoilmgges
is not well understood. In this paper, we evaluated the imphc
image compression with respect to the ability of a CAD altponi
to identify CaP regions on whole-mount histology sectidBgecif-
ically, we applied our previously-developed CAD system 2oirh-
ages compressed at 14 different compression ratios usi@ 2600
for a total of 168 CAD experiments. System performance wa/gh
to be very robust for compression ratios uplt®56. Beyond this
level performance dropped off sharply. As can be easily seéme
images in Figure 1, this drop-off results from the inabildl the
CAD system to detect the individual glands. Local high frengy
information is lost at high compression rates, thus we shexpect
a decline in CAD performance when gland size becomes small in

Fig. 3. (a) Plot of evaluation metric (AUC) as the compressionlleve relation to remaining high frequency information (lesstsirtfor-

increases. CAD performance is fairly consistent up untibmpres-
sion ratio of 1:256 when performance falls off. (b) Plot othm-
ogist con dence in correctly identifying spatial extent G&P on a
single whole-mount histology section at the 1.25x magrti@a as
compression level increases. Note that a decrease in cncedgoes
not correlate with a decrease in accuracy.

4. RESULTS AND DISCUSSION

4.1. Experiment 1: CAD Performance on Compressed Images
4.1.1. AUC vs. Compression Ratio

Quantitative classi cation results are shown in Figure) 3¢th the
AUC for each compression ratio plotted as a function of caspr
sion ratio. The independent axis is plotted using a log (Baseale.
For compression ratios up to 1:256 there is very little degtian
in classi er performance. At higher compression ratiofpenance
decreases rapidly; as seen in Figure 1(h), the gland deteatijo-
rithm can no longer identify the lumens.

4.1.2. Qualitative Evaluation of CaP Regions

Figure 1(e) shows a portion of an uncompressed image thédiosn
several glands. Notice that the number and relative sizéshkapes
of the gland segmentations are very consistent up to a casipre

ratio of 1:256 (Figures 1(e)-(g)). As the compression ratio reaches

increasingly higher levels, details become lost and therétgn can
no longer nd the lumen regions (Figure 1(h)).

4.2. Experiment 2: Reader Inspection of Compressed Images

The reader con dence in classi cation is plotted in FigurpBas
a function of compression ratio. The pathologist is quita dent

in classifying the cancerous regions in the image until c@sgion
ratio reaches arountl: 64, at which point con dence begins to de-
crease.

Note that we are making a distinction between con dence and4]

accuracy: although the pathologist becomes much less eon dt
ratios exceeding 1:64, this may not necessarily signifyraroensu-
rate reduction in detection performance. The pathologiatling is
drawing information from not only morphological featursizé and
shape of gland areas), but also on the texture and nucleargaq

mation will remain for higher compression rates).

We also had an expert pathologist evaluate the effects of com
pression on diagnostic image quality. Interestingly, théhplogist
perceived degradation at compression ratios that did fetta€AD
performance. This is not unexpected. Whereas the CAD algori
only considers the size of the glands, a pathologist inéspaddi-
tional information such as glandular morphology and theiing
from the H&E stain. Perhaps these attributes degrade macklgu
with compression than does glandular area. This suggeststth
might be useful to store images at one compression ratioisolal/
analysis and at another for automated CAD analysis. Aduitlg,
different CAD systems (for the same task) would likely varyheir
robustness to compression. For example, those using eoreace
matrices to extract textural features would likely be veepstive
to the removal of high frequency information. It remains eodeen
whether similar CAD robustness observed here will hold ightr
level tasks, such as determining the malignancy of cansetissue
at which a much higher magni cation might be required. In-gen
eral, the impact of compression is a function of many facsoch as
the compression scheme, the general task, and the spegodithl-
mic implementation. Further research is needed to bettenstand
these dependencies.
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