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ABSTRACT

A single digital pathology image can occupy over 10 gigabytes of
hard disk space, rendering it dif�cult to store, analyze, and trans-
mit. Though image compression provides a means of reducing the
storage requirement, its effects on computer-aided diagnosis (CAD)
and pathologist performance are not yet clear. In this work we as-
sess the impact of compression on the ability of a CAD system to
detect carcinoma of the prostate (CaP) on histological sections. The
CAD algorithm proceeds as follows: Glands in the tissue are seg-
mented using a region-growing algorithm, and the size of each gland
is extracted. A Markov prior (speci�cally, a probabilisticpairwise
Markov model) is employed to encourage nearby glands to share
the same class (i.e. cancerous or non-cancerous). Finally,cancer-
ous glands are aggregated into continuous regions using a distance-
hull algorithm. We trained the CAD system on 28 images of whole-
mount histology (WMH) and evaluated performance on 12 images
compressed at 14 different compression ratios (a total of 168 exper-
iments) using JPEG2000. Algorithm performance (measured using
the under the receiver operating characteristic curves) remains rel-
atively constant for compression ratios up to1 :256, beyond which
performance degrades precipitously. For completeness we also have
an expert pathologist view a randomly-selected set of compressed
images from one of the whole mount studies and assign a con�-
dence measure as to their diagnostic �delity. Pathologist con�dence
declined with increasing compression ratio as the information nec-
essary to diagnose the sample was lost, dropping from 100% con�-
dence at ratio1:64 to 0% at ratio1:8192.

1. INTRODUCTION

Digitized images of large tissue samples, such as whole-mount his-
tology (WMH) sections of the prostate, can constitute more than 10
GB of data. On a daily basis a large pathology lab may process
hundreds of such studies. This volume of data presents several chal-
lenges to digital pathology: 1) Storage becomes prohibitively expen-
sive. 2) Telepathology, the transmission of digital imagesover com-
puter networks, is untenable. 3) It becomes impossible to employ
sophisticated computer-aided diagnosis (CAD) systems. Mitigating
these issues requires a method for reducing image �le size while re-
taining diagnostic �delity [2].

� This work was made possible via grants from the Wallace H. Coulter
Foundation, New Jersey Commission on Cancer Research, National Can-
cer Institute Grant Nos. R01CA136535-01, ARRA-NCl-3 R21CA1271861,
R21CA127186 R03CA128081-01, and R03CA143991-01, The Cancer Insti-
tute of New Jersey, and the Life Science Commercialization Award.

Compression algorithms are a common method for decreasing
the storage size of images. The ratio of an uncompressed �le size
to its compressed size is known as thecompression ratio. There
are two main methods of compression:lossless, which are fully re-
versible but are limited by a low compression ratio, andlossy, which
achieve high compression ratios at the cost of reduced imagequal-
ity. In digital pathology, loss of image quality can adversely affect
the ability of both a CAD system [3] and a pathologist [4] to perform
analysis.

The majority of previous research into the impact of compres-
sion of histological images relied on visual quality as measured by a
pathologist. For example, Foran, et al. [4] determined which com-
pression ratios were suitable for diagnosis using telepathology. To
our knowledge very few papers attempt to quantitatively measure
the effects of compression on an automated system: López, et al.
[3] found that the differences in nuclei counts as performedby their
automated system were not signi�cantly affected by compression ra-
tios of up to1:46.

In this work we evaluate the impact of JPEG2000 compression
on the ability of a computer-aided diagnosis (CAD) system tode-
tect carcinoma of the prostate (CaP) on WMH histological sections.
The goals of this work are twofold: 1) To evaluate the ef�cacyof
JPEG2000 compression on WMH sections in the context of CAD
performance, and 2) to explore the robustness of our CAD algo-
rithm to different compression ratios at a speci�c magni�cation. Our
previously-developed CAD system [1] proceeds as follows: Step 1)
glands are segmented, Step 2) the segmented glands are classi�ed as
malignant or benign, and Step 3) the malignant glands are consoli-
dated into continuous regions. The system was shown to detect CaP
regions with a sensitivity of 88% and an accompanying false posi-
tive rates of the 10% [1]. In the current study, we used a database of
40 WMH images (28 training, 12 testing) to determine the robust-
ness of the CAD algorithm to lossy compression. Our testing set of
12 WMH images were compressed via JPEG2000 at 14 different ra-
tios (a total of 168 experiments) and evaluated for to determine the
robustness of the CAD algorithm to lossy compression. For com-
pleteness we also perform a reader study, wherein a pathologist is
asked to provide a con�dence measure as to the diagnostic �delity
for different degrees of compression.

2. METHODOLOGY

2.1. Image Compression Algorithm

The JPEG2000 compression standard and coding system is a popu-
lar wavelet-based algorithm capable of preserving visually percep-
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Fig. 1. JPEG2000 compression on (a) an original histopathology image at (b)1:16 , (c) 1:256, and (d)1:4096compression ratios. Black
contours identify the cancer region in (a)-(d). The region of interest shown in the lower-left quandrant on (a)-(d) has been magni�ed in (e)-(h)
to illustrate differences in gland detection and segmentation at different ratios. Shown in the bottom row are the results of the CAD algorithm
[1] on the original (i) and compressed (j)-(l)images, with blue indicating cancerous glands and the red contour indicating the consolidated
region of cancerous glands. Results are fairly robust untilcompression ratios greater than1:256. Note that performance decreases as a result
of compression effects at the gland level (h), where detection of glands is impossible.

tive features while achieving high compression ratios compared to
alternative methods. An image is �rst convolved with the Cohen-
Daubechies-Feauveau discrete wavelet transform to generate a set
of coef�cients, which are scalar-quantized to reduce the amount of
data required to store the image. The quantization step determines
the strength of the compression (i.e. the compression ratio). This
results in a set of subband levels representing different approxima-
tions of the image; we choose the sixth subband level for analysis,
which retains a high amount of visual information from the original
image. Finally, the subband levels are divided into code blocks of
64-by-64 pixels, which are each individually encoded. It should be
noted that during this process, the height and width of the image do
not change, but the amount of information used to represent each
image is reduced signi�cantly.

We utilize the OpenJPEG implementation of the JPEG2000
standard to produce 14 different compression ratios, generating a
single image per compression operation. The compression ratios
ranged from1:1 (no compression) to1:8192 (high compression).
Examples of compression can be seen in Figure 1. The original
images are shown in Figure 1(a), along with subsequently higher
compression ratios (Figures 1(b)-1(d), respectively).

2.2. Prostate Cancer Detection and Classi�cation

Figure 1(a) illustrates a prostate histological (tissue) section. The
pinkish hue results from the H&E staining procedure. The super-
imposed black line delimits the spatial extent of CaP as determined
by a pathologist. The numerous white regions are the gland lumens,
i.e. cavities in the prostate through which �uid �ows. Our auto-
mated system identi�es regions of CaP by leveraging two biological
properties: 1) cancerous glands (and hence their lumens) tend to be
smaller in cancerous than benign regions and 2) malignant/benign
glands tend to be proximate to other malignant/benign glands.

2.2.1. Gland Segmentation

Figure 2 illustrates the gland segmentation procedure. We extract the
luminance channel of the digitized section (CIE Lab color space),
where gland regions appear as contiguous, high intensity pixels cir-
cumscribed by sharp boundaries (Figure 2(a)). We convolve the im-
age with a Gaussian kernel at multiple scales to generate multiple
smoothed images (Figure 2(b) illustrates one such image.).The local
maxima (i.e. single pixel peaks) are considered to be lumen centers
(Figure 2(c)), which serve as seeds for a region-growing algorithm
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Fig. 2. Overview of the gland detection and segmentation proce-
dure. The luminance channel (a) is convolved with a Gaussianker-
nel to generate a smoothed image (b). Peaks in this image are used
to detect gland centers (c). A region-growing algorithm is used in
the unsmoothed image to extract gland size (d). Segmentations with
poor average edge strengths are discarded.

(Figure 2(d)). We brie�y outline this algorithm. First de�ne the
following: 1) current region(CR) is the set of pixels representing
the segmented region in the current step of the algorithm, 2)cur-
rent boundary(CB) is the set of pixels that neighbor CR in an 8-
connected sense, but are not in CR, and 3)internal boundary(IB) is
the subset of pixels in CR that neighbor CB. The growing procedure
begins by initializing CR to a seed pixel assumed to lie within the
gland. At each iteration CR expands by aggregating the pixelin CB
with the greatest intensity. CR and CB are updated, and the process
continues. The algorithm terminates when theL1 norm from the
seed to the next aggregated pixel exceeds a predetermined threshold.
That is, theL1 norm establishes a square bounding box about the
seed; the growing procedure terminates when the algorithm attempts
to add a pixel outside this box. During each iteration the algorithm
measures the boundary strength which is de�ned as the average in-
tensity of the pixels in IB minus the average intensity of thepixels
in CB. After the growing procedure terminates, the region with the
greatest boundary strength is selected. If the boundary strength is
below a predetermined signal-to-noise ratio, it is discarded.

2.2.2. Gland Classi�cation

Let the setS= f 1; 2; : : : ; N g reference theN segmented glands in a
histological. Each gland has an associated stateX s 2 � � f ! 1 ; ! 2g,
where! 1 and ! 2 indicate malignancy and benignity, respectively.
The random variableYs 2 R indicates the area of glands. Let X =
(X 1 ; X 2 ; : : : ; X N ) andY = ( Y1 ; Y2 ; : : : ; YN ) refer to all random
variablesX s andYs in aggregate. The state spaces ofX andY are
the Cartesian products
= � N andRD� N .

We use maximuma posteriori (MAP) estimation to �nd the
optimal X given the feature vectorY , i.e. we maximize thea
posteriori probability P (X jY ). This probability is proportional to

the product of the conditional probabilityP (Y jX ) and the prior
distribution P(X ). The conditional probability models the area
of the glands, as cancerous glands tend to be smaller in size than
benign glands [5]. The prior distribution incorporates thebiological
tendency for cancerous/benign glands to appear near other can-
cerous/benign glands. More speci�cally,P (X ) is modeled using
probabilistic pairwise Markov model (PPMM) [1], a novel Markov
prior which is both more �exible and intuitive than typical Markov
priors (such as the Potts model). Both the conditional and prior
distributions can be learned via training.

2.2.3. Gland Consolidation

Glands determined to be cancerous are consolidated into continuous
regions. To perform this consolidation we use a modi�ed formof
the convex hull called distance hull or Dhull [1]. Unlike theconvex
hull, Dhull places a restriction on the maximum distance between
consecutive points on the hull, thus allowing the formationof non-
convex boundaries which can better conform to the true CaP regions.

3. EXPERIMENTAL SETUP AND EVALUATION

The dataset consists of 40 prostate histology sections stained with
hematoxylin and eosin (H&E), obtained from radical prostatec-
tomies at the University of Pennsylvania and Queens University
in Canada. Each sample contains regions of CaP ranging in ma-
lignancy from Gleason scores six to eight, and is digitized at 1.25x
optical magni�cation (8� m per pixel) using an Aperio slide scanner.
The CaP regions on each digitized sample are manually delineated
by a pathologist using a black contour in an image editor.

3.1. Experiment 1: Automated Cancer Detection via CAD

Twenty eight of the histological sections (uncompressed) were used
to train the CAD system described in Section 2.2. The remaining 12
images were each compressed at1:1; 1:2; : : : ; 1:8192, yielding a
test set of 168 images. To assess system performance we de�nethe
following measure: true positives (TP) indicate the area ofthe HSs
denoted as cancerous by both the pathologist and CAD, and similarly
we de�ne true negatives (TN), false positives (FP), and false nega-
tives (FN). From these we obtain two additional measures: the true
positive rate TP/(TP+FN) and the false positive rate FP/(TN+FP).

The performance of the CaP detection system with respect to all
preceding measures is in�uenced by the (user-supplied) probability
that a gland is malignant (or one minus the probability it is benign).
Varying this probability from zero to one yields a receiver operator
characteristic (ROC) curve. To arrive at a measure that is indepen-
dent of the prior probability we can calculate the total areaunder
the ROC curve (AUC). Therefore, to evaluate the impact of com-
pression ratio on the performance of the CaP detection system we
choose to measure the AUC for each group of 12 images sharing the
same compression ratio. This produces 14 total AUCs (one foreach
compression ratio).

3.2. Experiment 2: Pathologist Reader Visual Inspection

An expert pathologist was instructed to state the con�dencein their
ability to identify the regions of CaP for a single whole-mount sec-
tion at 1.25x magni�cation. The con�dence measure ranges from 0
to 100, with 100 being absolute certainty and 0 indicating the ab-
sence of diagnostic information. To prevent previously-viewed im-



ages from in�uencing subsequent con�dence measures, the images
were considered serially from the most- to the least-compressed.
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Fig. 3. (a) Plot of evaluation metric (AUC) as the compression level
increases. CAD performance is fairly consistent up until a compres-
sion ratio of 1:256 when performance falls off. (b) Plot of pathol-
ogist con�dence in correctly identifying spatial extent ofCaP on a
single whole-mount histology section at the 1.25x magni�cation as
compression level increases. Note that a decrease in con�dence does
not correlate with a decrease in accuracy.

4. RESULTS AND DISCUSSION

4.1. Experiment 1: CAD Performance on Compressed Images

4.1.1. AUC vs. Compression Ratio

Quantitative classi�cation results are shown in Figure 3(a), with the
AUC for each compression ratio plotted as a function of compres-
sion ratio. The independent axis is plotted using a log (base2) scale.
For compression ratios up to 1:256 there is very little degradation
in classi�er performance. At higher compression ratios performance
decreases rapidly; as seen in Figure 1(h), the gland detection algo-
rithm can no longer identify the lumens.

4.1.2. Qualitative Evaluation of CaP Regions

Figure 1(e) shows a portion of an uncompressed image that contains
several glands. Notice that the number and relative sizes and shapes
of the gland segmentations are very consistent up to a compression
ratio of 1:256 (Figures 1(e)-(g)). As the compression ratio reaches
increasingly higher levels, details become lost and the algorithm can
no longer �nd the lumen regions (Figure 1(h)).

4.2. Experiment 2: Reader Inspection of Compressed Images

The reader con�dence in classi�cation is plotted in Figure 3(b) as
a function of compression ratio. The pathologist is quite con�dent
in classifying the cancerous regions in the image until compression
ratio reaches around1:64, at which point con�dence begins to de-
crease.

Note that we are making a distinction between con�dence and
accuracy: although the pathologist becomes much less con�dent at
ratios exceeding 1:64, this may not necessarily signify a commensu-
rate reduction in detection performance. The pathologist reading is
drawing information from not only morphological features (size and
shape of gland areas), but also on the texture and nuclear arrange-
ment which are not modeled by the CAD system. These features are
more likely to be affected by an increase in compression ratio.

5. CONCLUDING REMARKS

The effects of lossy compression on the analysis of histology images
is not well understood. In this paper, we evaluated the impact of
image compression with respect to the ability of a CAD algorithm
to identify CaP regions on whole-mount histology sections.Specif-
ically, we applied our previously-developed CAD system to 12 im-
ages compressed at 14 different compression ratios using JPEG2000
for a total of 168 CAD experiments. System performance was shown
to be very robust for compression ratios up to1:256. Beyond this
level performance dropped off sharply. As can be easily seenin the
images in Figure 1, this drop-off results from the inabilityof the
CAD system to detect the individual glands. Local high frequency
information is lost at high compression rates, thus we should expect
a decline in CAD performance when gland size becomes small in
relation to remaining high frequency information (less such infor-
mation will remain for higher compression rates).

We also had an expert pathologist evaluate the effects of com-
pression on diagnostic image quality. Interestingly, the pathologist
perceived degradation at compression ratios that did not affect CAD
performance. This is not unexpected. Whereas the CAD algorithm
only considers the size of the glands, a pathologist interprets addi-
tional information such as glandular morphology and the coloring
from the H&E stain. Perhaps these attributes degrade more quickly
with compression than does glandular area. This suggests that it
might be useful to store images at one compression ratio for visual
analysis and at another for automated CAD analysis. Additionally,
different CAD systems (for the same task) would likely vary in their
robustness to compression. For example, those using co-occurrence
matrices to extract textural features would likely be very sensitive
to the removal of high frequency information. It remains to be seen
whether similar CAD robustness observed here will hold for higher
level tasks, such as determining the malignancy of cancerous tissue
at which a much higher magni�cation might be required. In gen-
eral, the impact of compression is a function of many factorssuch as
the compression scheme, the general task, and the speci�c algorith-
mic implementation. Further research is needed to better understand
these dependencies.
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