
Historygrams: Enabling Interactive Global Illumination
in Direct Volume Rendering using Photon Mapping

Daniel Jönsson, Joel Kronander, Timo Ropinski, and Anders Ynnerman

Fig. 1. A CT scan of a hand rendered using the proposed historygram-based volumetric photon mapper. The insets show the high
dynamic range achievable in shadowed areas resulting from multiple scattering, as well as the usage of different materials. When
using our method only � 30%of the light transport solutions need to be recomputed when changing the material of the bone.

Abstract —In this paper, we enable interactive volumetric global illumination by extending photon mapping techniques to handle
interactive transfer function (TF) and material editing in the context of volume rendering. We propose novel algorithms and data
structures for �nding and evaluating parts of a scene affected by these parameter changes, and thus support ef�cient updates of the
photon map. In direct volume rendering (DVR) the ability to explore volume data using parameter changes, such as editable TFs, is
of key importance. Advanced global illumination techniques are in most cases computationally too expensive, as they prevent the
desired interactivity. Our technique decreases the amount of computation caused by parameter changes, by introducing Historygrams
which allow us to ef�ciently reuse previously computed photon media interactions. Along the viewing rays, we utilize properties of the
light transport equations to subdivide a view-ray into segments and independently update them when invalid. Unlike segments of a
view-ray, photon scattering events within the volumetric medium needs to be sequentially updated. Using our Historygramapproach,
we can identify the �rst invalid photon interaction caused by a property change, and thus reuse all valid photon interactions. Combining
these two novel concepts, supports interactive editing of parameters when using volumetric photon mapping in the context of DVR.
As a consequence, we can handle arbitrarily shaped and positioned light sources, arbitrary phase functions, bidirectional re�ectance
distribution functions and multiple scattering which has previously not been possible in interactive DVR.

Index Terms —Volume rendering, photon mapping, global illumination, participating media.

1 INTRODUCTION

Interactive Direct Volume Rendering (DVR) is an increasingly im-
portant method for exploration and presentation of data in a wide
range of application domains. Rendering speeds for volume data have
improved greatly over the past decades due to development of both
hardware and algorithms. However, current methods for volumetric
illumination in DVR are still severely limited, often only handling
single-scattering, �xed illumination or not even taking volumetric self-
shadowing into account [16]. This is in sharp contrast to the more
complex models that have been deployed in off-line rendering of real-
istic looking images of both surface and volumetric objects [4]. Within
DVR tradeoffs have usually been made in order to support interactive
editing of the transfer function (TF), which is an integral part of any
DVR pipeline.

The driving force behind the desire to apply more realistic illumi-

� Daniel J̈onsson, Joel Kronander, Timo Ropinski, and Anders Ynnerman
are with Link̈oping University, Sweden. E-mail:
f daniel.jonsson, joel.kronander, timo.ropinski, anders.ynnermang@liu.se.

Manuscript received 31 March 2012; accepted 1 August 2012; posted online
14 October 2012; mailed on 5 October 2012.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

nation is the fact that light is the fundamental carrier of visual infor-
mation. The lighting used in the rendering of an image has an enor-
mous impact on how it is interpreted by a human observer. By care-
fully designing the lighting setup, illumination can reveal strong visual
cues [21, 23] describing global structures, local details and curvature
of surfaces and volumetric structures that would otherwise be hidden
from the observer. It has, furthermore, been shown that a perceptu-
ally important part of the light interaction in the scene is light that has
scattered more than one time in the medium [8, 17].

In this work we enable highly realistic volume renderings at inter-
active rates, based on photon mapping. We achieve interactive frame
rates, by introducing a novel approach where only light interactions
that have been affected by the parameter changes are recomputed.
Photon mapping (PM) is extensively used in computer graphics for
rendering participating media [14, 15], as it is an ef�cient method
for producing physically plausible global illumination effects. Even
though photon mapping can produce a wide range of illumination ef-
fects, it has so far been too expensive to be used in interactive volu-
metric illumination. This is due to the fact that all view-rays and all
photons need to be recomputed as soon as the scattering parameters
change, which prevents interactive TF editing. In this paper we intro-
duce interactive photon mapping for DVR by proposing a novel con-
cept, which we refer to asHistorygrams. A Historygram is a histogram
of the parameters used to compute a photon, or a viewing ray. Thus,

Historygrams enable us to detect which photons and viewing rays are
invalid based on a parameter change, for example, editing the TF. We
then only recompute these invalid parts, and can thus achieve inter-
active rendering times while producing highly realistic images (see
�gure 1). The main contributions of this paper are:

� Enabling volumetric photon mapping for use in DVR, allowing
interactive editing of the TF and, a range of perceptually impor-
tant global illumination effects, such as multiple-scattering and
specular materials.

� Introduction of Historygrams, a novel concept for ef�ciently
storing and evaluating the parameter history upon which a par-
ticular computed object (viewing ray segment or photon path) is
dependent on.

� Methods and data structures for ef�cient queries of individual
Historygramsfor large numbers of objects.

2 RELATED WORK

Interactive rendering of global illumination effects has been a long
standing challenge in computer graphics. Here we focus on photon
mapping techniques as well as those techniques proposed for interac-
tive DVR. Ritschel et al. provide a more comprehensive overview of
interactive global illumination techniques in a recent survey [27].
Photon Mapping. Photon mapping is a biased two-pass global illumi-
nation algorithm that often produces images with less noise than other
Monte Carlo algorithms [14]. In the �rst pass, a photon map, repre-
senting the incident illumination in the scene, is generated by tracing
photons from light sources through the scene. The second pass esti-
mates the �nal rendering using ray-tracing, whereby the radiance in
the scene is estimated by computing an approximation of the photon
density given by the photon map computed in the �rst pass. However,
for �nite sample sets, this approximation smooths the true radiance
and causes bias, i. e., a nonzero expected error. Still, PM is generally
a consistent Monte Carlo method, meaning that, in the limit of using
an in�nite number of photons, the approximation converges to the true
solution. Recent work on Progressive Photon Mapping (PPM) [9, 5],
provides a way to reduce bias by using several rendering passes where
photons are progressively traced and discarded, updating the radiance
estimates after each photon tracing pass in such a way that the ap-
proximation converges to the correct solution in the limit. PM for vol-
umetric media was �rst introduced by Jensen and Christensen [15].
Jarosz et al. [13] improved on the original formulation by using a
more ef�cient beam radiance query, instead of using redundant photon
density estimations during ray marching. Recently, Jarosz et al. [12]
also showed how to approximate the photon density as a set of photon
beams, improving the performance further. In general our method is
orthogonal to these concepts, however some minor modi�cations are
necessary which we discuss in Section 7. None of the discussed meth-
ods effectively handle the effects of local parameter changes and, thus,
need to recompute the entire photon map (all photon beams) and all
view-rays even for small parameter changes. In contrast, Dmitriev et
al. [6], propose to reuse unaffected photons across frames in dynamic
scenes. Using Quasi-Monte Carlo photon tracing they �rst randomly
retrace a small set of photons to �nd regions where photons need to
be recomputed. They then show how photons in affected regions can
be found from the set of sparse samples with a high probability by us-
ing the periodicity of the generated quasi-random Halton sequence to
�nd photons with similar paths. Although, the idea of reusing valid
photons across frames is not new in computer graphics, to the authors
knowledge these methods have not been applied in the context of vol-
ume rendering before and no previous work has considered adaptive
photon retracing based on TF edits.
Interactive Illumination for DVR. Traditionally, full global illumi-
nation effects have been too costly to be used in interactive DVR ap-
plications, and instead different approximations have been made. We
address a few of these approaches, and refer the reader to a more com-
plete survey by J̈onsson et. al [16].

Several methods exploit texture slicing to estimate forward scatter-
ing, shadows and color bleeding [18, 32, 34]. While these approaches,
can only be used in slice-based renderers, several ambient occlusion

approaches are renderer independent. Hernell et al. perform a ray-
casting pass per voxel over a local spherical neighborhood [11], while
Ropinski et al. [30] compute local data histograms to obtain ambient
occlusion effects. However, these methods are limited to local effects
and do not, in contrast to our approach, incorporate physically based
global illumination effects. To simulate global shadow effects, meth-
ods computing shadow volumes [3, 29] and deep shadow maps [10]
have been presented. These methods sample the volumetric occlusion
from the light sources utilizing ef�cient pre-computed data structures.
More recently, Sund́en et al. [33] have proposed exploiting the plane
sweep paradigm to enable dynamic illumination with a low memory
overhead at interactive frame rates. Kronander et al. [20] uses an ef�-
cient multi-resolution grid to store visibility information using Spheri-
cal Harmonics. Lindemann and Ropinski [22] have exploited spherical
harmonics in a similar manner for enabling advanced material proper-
ties in the context of DVR. To achieve physically more plausible re-
sults, unbiased Monte Carlo methods have also been adopted for real-
time DVR [31, 19]. However, interactivity is limited as TF updates are
expensive since the complete volume transport has to be recomputed
for all, even minor or local, TF changes. Alternatively, for real-time
rendering of participating media the full global illumination solution
can be approximated by focusing only on single scattering [7].

3 BACKGROUND

In this section we provide the theoretical background for volumetric
photon mapping. Subsection 3.1 describes the details of light transport
in a participating medium and establises notations, while we show how
to numerically approximate the light transport using volumetric PM in
Subsection 3.2.

3.1 Volumetric Illumination Model

In participating media, photons are affected by emission, in-scattering,
absorption and out-scattering [25].

We start our derivation by considering a samplex along a viewing
ray. RadianceLs(x; ~wo) emitted and scattered fromx into the direction
~wo can be de�ned as:

Ls(x; ~wo) = ssLi(x; ~wo) + saLe(x; ~wo); (1)

wheress is the scattering coef�cient andsa is the absorption coef-
�cient. The radiance reaching a pointxc along the viewing ray with
direction ~wo is the sum of the background radianceL0(~x0; ~wo), at the
boundary of the volume and the accumulated emitted and in-scattered
radiance from the medium.

L(xc; ~wo) = T(x0;xc)L0(x0; ~wo)+
Z xc

xo

T(x;xc)(ssLi(x; ~wo) + saLe(x; ~wo))dx; (2)

whereT(xi ;x j) is the transmittance between pointsxi andx j , describ-
ing how light is attenuated when traveling through the volume

T(xi ;x j) = e�
Rxj

xi t (x0)dx0
; (3)

wheret (x0) speci�es the extinction atx0. One property of the trans-
mittance, which we utilize in this work, is that the transmittance is
multiplicative, i. e. that it can be divided into segments and multipled
together:

T(~xi ;~x j) = T(~xi ;~xk) � T(~xk;~x j): (4)

The in-scattered radiance,Li(x;~w), depends on radiance arriving atx
from all directions,~w, over the sphere of directions ,W4p ,

Li(x;~w) =
Z

W4p

s(x; ~w0;~w)L(x; ~w0)d~w0 (5)

wheres(x; ~wi ; ~wo) represents the scattering function at the pointx. In
this work, we enables(~x; ~wi ; ~wo) to shift between phase function and
BRDF depending on the material given by the TF. This allows the user
to create surface-like materials within the volume.

3.2 Volumetric Photon Mapping

In this work we adopt the standard photon mapping framework for
volumetric media, originally proposed by Jensen and Christensen [15].
Photon Tracing. In a �rst pass, a Markov random-walk approach is
used to trace photons from light sources into and through the volume.
For each photon, importance sampling is used to select from which
light source the photon should be traced, and to generate a position
and direction on the chosen light source. Photons traced through the
volume may either pass unaffected or interact (be absorbed, or scat-
tered) at each point. To decide if and where the photon interacts with
the media, we draw a sample from the probability distribution of a
scattering or absorption event, by using the inversion method. The
cumulative probability distribution for an interaction event is given by

C(x) = 1� T(xs;x) = 1� e�
Rx

xs t (x0)dx0
; (6)

wherexs is the point at which the photon enters the volume and the
transparency,T(xs;x), is computed using standard ray-marching. At
each point where the photon interacts with the volume a copy of the
photon �ux and incoming direction of the photon is stored in the pho-
ton map. Russian roulette is used to decide if the photon is absorbed
or scattered further in the medium. The probability that a photon is
scattered is given by

p(x) =
ss(x)
t (x)

: (7)

If the photon is scattered, importance sampling of the phase function
or BRDF is used to determine its new direction.
Rendering. To render the �nal image, viewing rays are generated
and ray-marching is used to evaluate equation (2). For each sampled
point along the ray, the photon map is used to form an estimate of the
in-scattered radiance. By using a spherical kernel of radiusr, the n
closest photons are used to estimate the in-scattered radiance

Li(x;~w) �
1

ss(x)

n

å
p= 1

s(x; ~wp;~w)
DFp(x; ~wp)

4
3pr3

; (8)

whereF p is the �ux of the photon,p, in direction ~wp.

4 METHOD

In this section we describe in detail how volumetric photon mapping
can be extended to handle interactive TF and other rendering parame-
ter changes, by using the Historygram concept in the context of DVR.

4.1 Overview

An important part of any DVR pipeline is the exploration of volume
data by performing interactive TF changes. This affects light transport
as the TF maps data values to material properties, such as transmit-
tance,t (x), scattering coef�cient,ss(x), absorption coef�cient,sa(x),
scattering function,s(x; ~wi ; ~wo). Thus, any pre-computation which
relies on volume material properties must be recomputed as soon as
the user changes the TF. Furthermore, interactive data exploration us-
ing the TF means that the volumetric medium may change in every
rendered frame. However, typically, the user does not make global
changes to the TF, but, instead, focuses on exploring different objects
in the volume, one at a time, or on tuning localized material proper-
ties. Consider, for example adjusting the diffuse color of the bone in
�gure 1. This enables us to only recompute the parts of the light trans-
port simulation which are affected by the changes, and reuse the ones
that do not change. To accomplish this we introduce an ef�cient par-
tition of the light transport calculations where we are using photons
to partition the incident illumination in the volume and view-ray seg-
ments for partitioning the ray-marching computations, as illustrated in
�gure 2. Each partitioning of the light transport solution stores its own
Historygram specifying which parameters have been used during the

P1P2

P3
P4

Eye

üïýïþ üïýïþ üïýïþüïýïþ

S1 S2 S7S2

üïýïþ

S3

üïýïþ
S4

üïýïþ

S5

üïýïþ

S6

Fig. 2. To localize the effect of parameter changes on the light trans-
port solution, we partition both the incident illumination using photons
and view-rays using ray-segments. To encode the parameters used for
the computation of each partition object, we store a separate History-
gram for each object. In this scheme, using only two material param-
eters, depicted by light blue and light red, a simple Historygram using
only two bits can be used to store the parameter history of each com-
putational object (photon, ray-segment). When tracing photons from the
light source, each photon inherits its ancestors Historygram due to scat-
tering, while for ray-segments each Historygram is independent of the
other segments Historygrams.

computation of this object (view-ray segment, photon). It is important
to note that the parameters in our case consist of volume data intensi-
ties since this makes the created Historygram independent of current
TFs, see section 4.3. Historygrams are a binary data structure de�ned
to provide a minimal memory footprint, while at the same time, being
ef�cient to query. When the user changes the TF we use the changed
parameter values to form a query over all stored Historygrams and,
thus, isolate the parts of the light transport solution which need to be
recomputed. To recompute the light transport in the volume, we �rst
update all invalid photons, i. e., retracing them from the last unaffected
intersection. Afterwards, affected viewing-ray segments are updated.

In section 4.2 we discuss how a general Historygram is constructed,
stored and effectively queried. We then, in section 4.3, explain how
we can ef�ciently store commonly used parameters in DVR using the
Historygram data structure. Compared to a standard photon map, we
store an additional Historygram for each photon in the photon map,
encoding the history of the light path the photon has traversed. The
exact details on how each photons Historygram is computed, are dis-
cussed in section 4.3.1. We additionally store a separate Historygram
for each view-ray segment. To only update parts of the viewing rays
at a time, the multiplicative property of the volume rendering integral
is used which states that compositing transparency can be performed
in any order. In section 4.3.2, we show how we can recompute only
those segments of viewing rays, which are affected by a TF update.

4.2 Historygrams

A Historygram represents a set of parameters, which has been used
during the computation of a particular object, e. g., a view-ray segment
or a photon. Before we discuss the application of Historygrams, we
will detail the notation of a Historygram and show how a Historygram
is incrementally constructed. We then describe an ef�cient way of
querying Historygrams, and how we can represent Historygrams using
an ef�cient binary data structure.
Notation. The Historygram,H, is a set of representable parameter
setsZi . A speci�c Zi represents a group of parameters represented as
a single entry in the Historygram. To map an arbitrary parameter,x,
to a representable setZi we de�ne a mapping,d : x ! f Zi , i = 1:::ng.
This mapping thus describes how arbitrary parameters are represented
in the HistorygramH.
Constructing Historygrams. At �rst, the Historygrams of all objects
are set to the empty setH0 = /0. During the computation of an object
with HistorygramHi , the parameters used ,x j , j = 1:::n, are added to

Alpha

Intensity

Query Historygram, Hq

1 1 0 0 1 0

TF 1

TF 2

Fig. 3. Transfer function changes are mapped to a query Historygram,
Hq, in the form of a �nite sequence of binary values. The current TF
setting is represented by a dashed blue line, and the new TF setting by
a solid red line. Given the difference in the TF setting, the changes are
mapped to affected data value intervals. A query Historygram with a 6
bit representation is shown in the bottom. By intersecting the intervals
with the support of the bins in the discrete Historygram representation,
affected bins are set to 1, and unaffected bins are set to 0.

the setHi+ 1

Hi+ 1 = Hi

n[

j= 1

d(x j); (9)

whereHi is the previous Historygram andHi+ 1 is the new Historygram
containing both the previous set of used parameters, andx. When the
computation has completed, the Historygram will thus contain infor-
mation about all parameters used during its lifetime.
Historygram Queries. When the parameters specifying the global
light transport solution change, we would like to evaluate which ob-
jects need to be updated. Therefore, equation 9 is used to map the
changed parameters into a Query-HistorygramHq. Then, for all ob-
jects we evaluate which subsets of parameters in the objects History-
gram,H, is affected by the change, by intersecting the sets

Hu = H \ Hq; (10)

whereHu represents the set of affected parameter sets. If the resulting
Hu is non empty we recompute the object with HistorygramH.
Historygram Representation. We propose to use a binary represen-
tation of the HistorygramH. This saves storage as only one bit needs
to be used to represent if a subset of parametersZi has been used.
Furthermore, for Historygram queries, the union[, and intersection
\ , can then be evaluated using the OR and AND operator respectively.
As these operations can be translated directly to hardware instructions,
they are extremely fast to evaluate. Also, since we use a binary repre-
sentation, we know that ifHu is not equal to zero at least one param-
eter subset that was used during the computation has changed . All
together, this allows us to ef�ciently answer the question if a compu-
tation has used a certain set of parameters or not. Thus, computations
which are not affected by a set of parameter changes may be reused.

4.3 Historygrams for Photon Mapping in DVR

In a standard DVR pipeline, the TF is used to map scalar data values
to optical properties. Using the fact that material properties in the
volume directly correspond to data values through the TF mapping,
we can use a mappingd, to transform data values to a representable
set of parametersZi . This enables the Historygram computation to be
independent of the current TF as only data values from the volume are
used. An example of ad(x) function, which maps data valuex 2 [0;1]
to a binary representable set inH is

d(x) = 1 << f loor(x� (p� 1)) ; (11)

where<< denotes the left bit shift operator andp is the number of
bits used for the Historygram. Typically,p is 32 or 64 such that the
native bit shift operator can be used. This corresponds to uniformly
discretizing the TF domain into a set ofp bins. Each bin corresponds
to the parameters speci�ed through the TF for the range of data values
represented by the bin. Query Historygrams are constructed in a sim-
ilar manner. First, we map the TF change to the affected data values,
and then we construct the query usingd(x) as in equation (11) (see

�gure 3). In the following two subsections, we explain how we fa-
cilitate the Historygram concept for photons and viewing-rays in the
context of DVR. Based on the Historygram representation, it can be
determined ef�ciently through binary processing, i. e., bitwise oper-
ations, if photons or viewing-rays are invalid. For storage, a single
bit represents a change of a parameter, which means that for instance
eight parameters can be represented using a single byte.

4.3.1 Photon Historygrams

As a photon traverses the medium it may be absorbed, or scattered
in different directions depending on optical properties of the medium.
This means that photons are dependent on previous interactions with
the volumetric medium. Therefore we must take this into account
when updating photon interactions. To do so, we create Historygrams
based on the volume data intensity as discussed in the previous sec-
tion. As soon as a photon interacts with the medium (scatters or ab-
sorbs, see Section 3.2), we store the Historygram, position, direction
and power of the photon interaction. A scattered photon continues to
use the Historygram, which means that the last photon interaction will
know about all data that was used for all scattering events of that pho-
ton. Then, when the parameters change and a query Historygram has
been created, we start by evaluating the last photon interaction. If the
last photon interaction was not affected by the parameter change, we
know that none of the previous ones where not either, and thus we do
not need to update any of them. However, if the photon interaction
was affected by the parameter change, we continue backwards until
we �nd a photon interaction which was not affected. Given the posi-
tion of the last valid photon interaction, and the material properties at
that location, we can apply importance sampling to determine a new
direction and restart photon tracing.

4.3.2 View-Ray Historygrams

For rays cast from the camera, we utilize Equation (4), which states
that the transmittance between two points can be divided into smaller
segments and multiplied together. Thus, each segment can be treated
independently. This means, that, if the user changes a parameter which
affects the inner parts of the volume, segments before and after do not
need to be recomputed as they are not affected by the change. Us-
ing the same approach as for photon interactions, each segment forms
its Historygram using equation (9) and equation (11). Therefore, we
store the Historygram of each segment together with the color. When
the user changes the material parameters we analyze if the segment has
been affected, using the query Historygram, and recompute it if neces-
sary. Generally we uniformly divide each view-ray into a user de�ned
number of segments,Vn. For a standard DVR pipeline the History-
gram only needs to be computed the �rst time a segment is computed,
as the underlying data does not change. The creation of Historygrams
for view-rays is therefore performed as soon as the camera stops mov-
ing. Then, when performing incremental updates, the Historygram
does not need to be updated.

In some cases ray segments need to be recomputed even though the
used volume data intensity is not affected by the parameter change.
For instance, this occurs when one structure within the data casts a
shadow on a another structure consisting of different intensity values.
If the occluding structure is removed, then the remaining structure
should be updated to take new photons into account. If this is not
done the view segments including the remaining object will not be up-
dated, and will appear to be in shadow even though they are not. It
is therefore not enough to know the data intensity based Historygram
alone. Instead, the spatial location of the changes is important. This
issue can be handled in various ways, but we propose the use of His-
torygrams for this as well. One Historygram is allocated for each of
the three dimensions of the data set. As an example, for a volume of
dimensions 643 we can recognize spatial changes at voxel resolution
using only 3� 64 bits, i.e. 64 bits per dimension. When a photon in-
teraction is removed or added due to a parameter change, a mapping
function is used for each dimension to update a single, global, spatial
Historygram. When all photons have been updated, this global spa-
tial Historygram will contain information about where all illumination

(a) Shadow ray-caster [28] (b) Our method using single scattering(c) Our method using multiple scattering

Fig. 4. (a) Synthetic Cornell Box (256� 256� 256 voxels) shaded using shadow volume propagation which simulates multiple-scattering with a
diffusion process [28], (b) our method using 4 million photons and single scattering, (c) our method using 4 million photons and multiple scattering.

changes have been made. Then, when updating view-ray segments, in
addition to the Historygram based on data intensity, the segment also
queries the spatial Historygram for changes within the photon radius.
In this paper, most changes made have been local, or affected the same
data intensities. Therefore, the spatial Historygram evaluation has not
been performed. It should, however, be considered for applications
where illumination accuracy is of importance.

5 IMPLEMENTATION

To realize the interactive application of the proposed Historygram
method, we have implemented the described concepts using OpenCL.
Data Structures. When the user changes the TF, it is neessecary to
search for invalid photons and viewing-ray segments. Additionally, it
is necessary to determine the order of scattering events for photons.
For this purpose, we use an implicitly linked list where the photon in-
teraction id determines the index into the list. In our implementation
we store the Historygram for each photon interaction in addition to its
position, direction and power. We apply the same implicitly linked
list concept to view-ray segments where the Historygram is stored to-
gether with the color. Thus, when the TF changes, we can start at the
last stored scattering event and move backwards in the list until a valid
photon is found.

In order to evaluate the in-scattered radiance during rendering, we
need to be able to �nd nearby photons for a location~x. To do so,
we have adopted a chaining hash table as described by Alcantara et
al. [1], which allows us to �nd nearby photons inO(1) time. We use
a hash function which maps the location~x into uniformly distributed
bins with the bin size equal to the photon radius. During photon trac-
ing, the index of the bin is stored together with the index of the photon
interaction in a list. The list can then be ef�ciently sorted on the GPU,

Fig. 5. A CT scan of an engine [256� 256� 256] rendered with multiple
scattering (2 light bounces) and 2.1 million photons. Changing material
properties from the left image to the right image can be performed 7.7
times faster using our Historygram method compared to a GPU com-
plete discard and rerender all photon mapping implementation.

based on bin index using radix sort [26]. The start and end of each bin
are then found and used to query how many, and which, photon inter-
actions are near a location. Since the photon radius is used for the bin
width, all photons within the given radius can be found by querying
the 27 surrounding bins of a location. When the user changes the TF,
and a photon is determined to be invalid, we move it from the current
location in the hash table to the new location.
Algorithm. During the photon tracing process we create a History-
gram for each photon interaction using equation 11, withp set to 64,
which allows us to use native instructions on the GPU when evalu-
ating Historygrams. As soon as the camera stops moving, we start a
ray-casting pass which generates and stores the Historygram for each
view-ray segment. Then, when the user starts to change parameters,
we create the HistorygramHq by comparing the new parameter to the
old one and add it if changed. When a photon interaction is found in-
valid, we set the occupied location in the hash to the maximum integer
value. To avoid the use of atomic operations, we reuse locations of the
removed photon interactions in the hash table. Then, when the hash
table has been sorted, we can determine the last index of the hash by
evaluating the number of existing, added and removed photon interac-
tions. Once the photons have been updated, we can start to evaluate
view-ray segments. In order to increase the work-group load distribu-
tion we update all segments independently and then composite them
in a separate step.

To incorporate realistic material shading effects, we support dif-
ferent material models. We primarily use isotropic phase functions,
although we also support Henyey-Greenstein and the Schlick approx-
imation. For BRDF speci�cation we use the microfacet distribution as
given by Ashikimin [2] or the recently published ABC model [24].

6 RESULTS AND EVALUATION

In this section, we show the quality and performance of our method
on a number of both real world and synthetic examples. All tests were
performed on a computer with an Intel Xeon 2.67 GHz processor, 6
GB random access memory and an Nvidia Geforce 570 graphics card.

6.1 Results

Using a full global illumination simulation, perceptually important ef-
fects, such as multiple-scattering, color bleeding and realistic material
functions can be incorporated in the DVR pipeline. Figure 4 shows a
synthetic Cornell Box (256� 256� 256 voxels) shaded using shadow
volume propagation as proposed by Ropinski et. al. [28], which uses
a diffusion process for approximating multiple-scattering, our method
using single scattering, and our method using multiple scattering (2
light bounces). As can be seen in the renderings, the diffusion approx-
imation fails to account for multiple scattering in these media, and
works best for dense objects. Using single scattering, our method is
able to accurately render the thin media in the interior of the room,
the transparent box as well as the solid objects in the scene. Multiple
scattering effects provide a visually pleasing result, and color-bleeding

(a) Golden lady, 512� 512� 625 voxels (b) Cenovix, 361� 331� 361 voxels

Fig. 6. Results achieved with our method. a) displays a CT scan of a woman, rendered using 2:1 million photons, 9 view segments, single
scattering, and three light sources. A microfacet BRDF function (Ashikimin-Shirley [2]) was used to add specular re�ections to the blood vessels,
and an isotropic phase function was used for the bone structures. Varying the material properties of the outer skin layer requires 74%of the photons
to be retraced and 24% of the view segments to be recomputed. b) displays a CT scan rendered using 1:6 million photons and 7 view segments.
Removing the kidney content requires 35% of the photons and 9% of the view segments to be recomputed. Changing the color of the vessels
requires 24% of the photons and 4% of the view segments to be recomputed, thereby enabling speedups of approximately 7 times.

Table 1. Performance measurements for the data sets used in this paper. As can be seen in the photon tracing and gathering columns with and
without Historygrams, interactive editing is enabled in almost all cases with up to 15 times speedup.

Data set Pn Samples
/voxel

Without Historygrams With Historygrams

Photon
tracing

Photon
gather-
ing

Vn Initialization
overhead

Photon tracing
/ Recomputed

Photon gathering
/ Recomputed

Total
speedup

Hand, �g 1 2.1 M 8.0 0.22 s 1.97 s 10 16% 0.10 s / 19 % 1.63 s / 29 % 1.3x
Cornell, �g 4(b) 4.2 M 2.0 0.32 s 9.11 s 7 26% 0.04 s / 3 % 0.57 s / 18 % 15.2x
Engine, �g 5 2.1 M 4.0 0.37 s 5.41 s 10 5% 0.10 s / 5 % 0.64 s / 19 % 7.7x
Golden lady, 2.1 M 1.5 0.37 s 1.31 s 9 25% 0.25 s / 74 % 0.43 s / 24 % 2.4x
�g 6(a)(top)
Golden lady, 2.1 M 1.5 0.23 s 1.32 s 9 3% 0.15 s / 71 % 1.11 s / 100 % 1.2x
�g 6(a)(bottom)
Cenovix, 1.6 M 4.0 0.11 s 1.25 s 7 8% 0.03 s / 24 % 0.16 s / 4 % 6.8x
�g 6(b)(top)
Cenovix, 1.6 M 4.0 0.11 s 0.95 s 7 11% 0.07 s / 35 % 0.25 s / 9 % 3.2x
�g 6(b)(bottom)

from the blue medium in the interior of the room can be seen on the
walls, the transparent box in the lower right also shows the effect of
sub-surface scattering.

Figure 6(a) shows a rendering of a CT scan of a woman (resolution
512� 512� 625). The images were rendered using single scattering, 2
million photons, 9 view-ray segments, and three light sources. Specu-
lar blood vessels and the diffuse bone structure eases the perception of
the vessel structure. Changing the transfer function for values affect-
ing the outer skin layer requires recomputing 74% of the photons and
24% of the view segments (see �gure 6(a)). As can be seen in the pho-
ton tracing and gathering columns in table 1, enabling Historygrams
reduces the computation time being non-interactive to interactive in al-
most all cases. Thus, interactive updates which could not otherwise be
performed are now possible. In general our method also performs well
on larger data sets, as the photon representation is independent of the
resolution of the data set. However, one could also argue that a higher
resolution data set requires more photons to display high-frequency
shadows.

6.2 Evaluation and Performance

The performance of our method is affected by a number of parameters,
the most important being:

� Pn - The number of photons traced into the scene.

� Vn - The number of view-ray segments.

� Sn - The maximum order of scattering events used in photon trac-
ing.

To evaluate the effect of these parameters on the TF update perfor-
mance, we varied the material properties of one arti�cial and one med-
ical data set. In the arti�cial Cornell box data set (256� 256� 256
voxels) we enabled nearest neighbor �ltering to avoid partial volume
effects and changed the color the sphere (see �gure 7). For the med-
ical data set we chose the Cenovix data set (361� 331� 361), where
the vessel material was changed (see �gure 8). Figure 7(b) and 8(b)
shows how our method compare to a GPU volume photon mapper
without our Historygrams. For both single,Sn = 1, and multiple scat-
tering,Sn = 2, our method has a considerable speedup (� 15 times for
the Cornell box and� 8 times for the Cenovix data set). The constant
speedup for varying number of photons occur since the relative amount
of recomputation needed is approximately the same. For the Cornell
box, the spatial locality of the data allows for better usage of the hard-
ware, both in terms of cache coherency and work-group utilization
which result in increased performance improvement. Figure 7(c) and
8(c) shows the update time for photon tracing and view-ray segments

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

2

4

6

8

10

12

14

16

Photons (Millions)

P
er

fo
rm

an
ce

 S
pe

ed
up

 U
si

ng
 H

is
to

ry
gr

am
s

Single Scattering
Multiple Scattering, 2 Bounces

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Photons (Millions)

T
F

 u
pd

at
e

tim
e

(s
ec

)

Photon tracing
View-ray recomputation

(c)

Fig. 7. Performance evaluation for updating the material properties of the sphere in a synthetic Cornell Box data set (256� 256� 256voxels) using
7 view-ray segments. (b) shows the relative speedup using our method compared to a standard GPU photon mapper. Consistent speedups of an
order of magnitude are achieved for both single and multiple scattering. (c) shows the update time for retracing invalid photons and recomputing
invalid view-ray segments using different number of photons in the scene (generated with single scattering).

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

2

4

6

8

10

12

14

16

Photons (Millions)

P
er

fo
rm

an
ce

 S
pe

ed
up

 U
si

ng
 H

is
to

ry
gr

am
s

Single Scattering
Multiple Scattering, 2 Bounces

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Photons (Millions)

T
F

 u
pd

at
e

tim
e

(s
ec

)

Photon tracing
View-ray recomputation

(c)

Fig. 8. Performance evaluation for updating the diffuse color of the blood vessels in the Cenovix data set (361� 331� 361) using 7 view-ray
segments. (b) shows the relative speedup using our method compared to a standard GPU photon mapper, speedups in the order of 6� 8 times are
achieved for both single and multiple scattering when using more than 0.5 million photons. (c) shows the update time for retracing invalid photons
and recomputing invalid view-ray segments using different number of photons in the scene (generated with single scattering).

for different number of photons traced into the scene,Pn. From these
two plots, we can see that the photon gathering is considerably more
expensive than the photon tracing. Figure 9 shows the effect of TF
updates when varying the number of view-rays segments.

In table 1, the parameters used for each data set rendered in the pa-
per is presented together with the update time for both the photon trac-
ing and photon gathering stage. In the ”Without Historygrams” col-
umn, the performance measurements are shown for the GPU photon
mapper which recomputes everything for all changes. For the column
”With Historygrams”, the number of view-ray segments, the initial-
ization overhead, and the amount of recomputation shown in addition
to the performance timings. The initialization overhead measures the
additional time it takes to create and store the Historygrams, which is
only performed once when the camera stops moving. The speedup
gained varies depending on the amount of recomputations that are
needed and the spatial locality of the data. For changes affecting the
outer parts of the volume, such as 6(a) almost all of the light trans-
port needs to be recomputed. However, even for these visually large
changes it is bene�cial to use Historygrams.

6.2.1 Memory consumption

We have also evaluated the overhead of storing and querying the His-
torygrams used in our method. Each photon interaction requires one
Historygram in addition to the regular data which consist of the po-
sition, direction and power. To trade speed for lower memory con-
sumption one could also use a single Historygram per photon. Each
view-ray segment requires one color in addition to the Historygram.
Note that the memory requirement for view-ray segments is indepen-

dent on the sampling rate. For the color, we use the half data type
which means that 8 bytes are required for the red, green, blue, and
alpha components.

Using 8 bytes (64 bits) for the Historygram and 8 bytes for the color,
our method implies a 16 MB GPU memory overhead per view-ray seg-
ment for a viewport resolution of 1024� 1024. Similarly for photons
we generally use 8 bytes per photon Historygram, implying a minor
memory overhead.

7 CONCLUSIONS AND FUTURE WORK

In this paper we have enabled the use of photon mapping in a interac-
tive DVR pipeline. To reach interactive frame rates during parameter
changes, which is of crucial importance in explorative volume ren-
dering, we have introduced and applied the novel concept of Histo-
rygrams. Historygrams encode the history of a photon or a view-ray,
which can then be used to only recompute photons and view-rays af-
fected by speci�c parameter changes such as TF edits. No approxi-
mations are introduced in the �nal solution since all invalid photons
and view-ray segments are recomputed, but we can still accomplish
an order of magnitude speedup. We have shown results using several
examples of real-world data sets yielding realistic renderings, as well
as synthetic data used for controlled performance measurements.

We would like to point out that the concept of Historygrams can
also be used for other rendering techniques. For general path tracing
methods, e. g., path tracing or bi-directional path tracing our concept is
directly applicable. The only requirement is that each path needs to be
stored and incrementally update its own Historygram based on the pa-
rameters affecting the path generation. Recent methods for volumetric

2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of view-ray segments

T
F

 u
pd

at
e

tim
e

(s
ec

)

Cornell box
Cenovix

(a)

Fig. 9. Update times for changing the TF when varying the number of
view-ray segments using 2.1 million photons and single scattering. The
solid orange line corresponds to changing the material properties of the
sphere in the Cornell box, �gure 7(a), and the blue dashed line repre-
sents the performance for the Cenovix data set scenario, �gure 8(a).

photon mapping use photon beams, both for photon queries and data
representation [12]. Our method is also applicable for these methods,
essentially a separate Historygram needs to be stored for each photon
beam used for representing incident illumination in the scene.

ACKNOWLEDGMENTS

We thank all reviewers for their valuable comments which helped to
greatly improve this paper. We would also like to thank Erik Sundén
for supplying transfer functions, and Matthew Cooper for proofreading
the manuscript. This work was partly supported by grants from the
Excellence Center at Link̈oping and Lund in Information Technology
(ELLIIT) and the Swedish e-Science Research Centre (SeRC). The
presented concepts have been realized using the Voreen open source
visualization framework (www.voreen.org).

REFERENCES

[1] D. A. Alcantara.Ef�cient Hash Table on the GPU. PhD thesis, University
of California, Davis, California, USA, 2011.

[2] M. Ashikhmin and P. Shirley. An anisotropic phong brdf model.Journal
of Graphics Tools, 5:25–32, 2000.

[3] U. Behrens and R. Ratering. Adding shadows to a texture-based volume
renderer. InIEEE Symposium on Volume Visualization, pages 39–46,
1998.

[4] E. Cerezo, F. Perez, X. Pueyo, F. Seron, and F. Sillion. A survey on par-
ticipating media rendering techniques.The Visual Computer, 21(5):303–
328, 2005.

[5] M. Z. Claude Knaus. Progressive photon mapping: A probabilistic ap-
proach. ACM Transactions on Graphics (Proceedings of SIGGRAPH
20011), 30(3), 2011.

[6] K. Dmitriev, S. Brabec, K. Myszkowski, and H.-P. Seidel. Interactive
global illumination using selective photon tracing. InProc. EGSR, pages
25–36, 2002.

[7] T. Engelhardt and C. Dachsbacher. Epipolar sampling for shadows and
crepuscular rays in participating media with single scattering. InSympo-
sium on Interactive 3D Graphics and Games, I3D '10, pages 119–125.
ACM, 2010.

[8] A. L. Gilchrist. The perception of surface blacks and whites.Scienti�c
American, 240(3), 1979.

[9] T. Hachisuka, S. Ogaki, and H. W. Jensen. Progressive photon mapping.
ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia
2008), pages 130:1–130:8, 2008.

[10] M. Hadwiger, A. Kratz, C. Sigg, and K. B̈uhler. Gpu-accelerated deep
shadow maps for direct volume rendering. InGraphics hardware, 2006.

[11] F. Hernell, P. Ljung, and A. Ynnerman. Local Ambient Occlusion in
Direct Volume Rendering.IEEE Transactions on Visualization and Com-
puter Graphics, 16(4):548–559, 2010.

[12] W. Jarosz, D. Nowrouzezahrai, I. Sadeghi, and H. W. Jensen. A com-
prehensive theory of volumetric radiance estimation using photon points
and beams.ACM Transactions on Graphics (Proceedings of SIGGRAPH
2011), 30(1):5:1–5:19, Jan. 2011.

[13] W. Jarosz, M. Zwicker, and H. W. Jensen. The beam radiance estimate for
volumetric photon mapping.Computer Graphics Forum (Proceedings of
Eurographics 2008), 27(2):557–566, Apr. 2008.

[14] H. W. Jensen. Global illumination using photon maps. InRendering
Techniques, pages 21–30. Springer-Verlag, 1996.

[15] H. W. Jensen and P. H. Christensen. Ef�cient simulation of light transport
in scences with participating media using photon maps. InProceedings
of SIGGRAPH 1998, SIGGRAPH '98, pages 311–320. ACM, 1998.

[16] D. Jönsson, E. Sund́en, A. Ynnerman, and T. Ropinski. Interactive Vol-
ume Rendering with Volumetric Illumination.Eurographics STAR 2012,
31, 2012.

[17] D. Kersten and A. Hurlbert. Discounting the color of mutual illumination:
A 3d shape-induced color phenomenon.Investigative Ophthalmology and
Visual Science, 32(3), 1996.

[18] J. Kniss, S. Premoze, C. Hansen, P. Shirley, and A. McPherson. A model
for volume lighting and modeling.IEEE Transactions on Visualization
and Computer Graphics, 9(2):150–162, 2003.

[19] T. Kroes, F. H. Post, and C. P. Botha. Exposure render: An interac-
tive photo-realistic volume rendering framework.PLoS ONE, 2012. Ac-
cepted, to appear.

[20] J. Kronander, D. J̈onsson, J. L̈ow, P. Ljung, A. Ynnerman, and J. Unger.
Ef�cient visibility encoding for dynamic illumination in direct volume
rendering.IEEE Transactions on Visualization and Computer Graphics,
18(3):447–462, 2012.

[21] M. Langer and H. B̈ulthoff. Depth discrimination from shading under
diffuse lighting.Perception, 29:649–660, 2000.

[22] F. Lindemann and T. Ropinski. Advanced light material interaction for
direct volume rendering. InIEEE/EG Int. Symp. on Volume Graphics,
pages 101–108, 2010.

[23] F. Lindemann and T. Ropinski. About the In�uence of Illumination
Models on Image Comprehension in Direct Volume Rendering.IEEE
TVCG(Vis Proceedings), 17(12):1922–1931, 2011.

[24] J. Löw, J. Kronander, A. Ynnerman, and J. Unger. Brdf models for ac-
curate and ef�cient rendering of glossy surfaces.ACM Trans. Graph.,
31(1):9:1–9:14, Feb. 2012.

[25] N. Max. Optical models for direct volume rendering.IEEE Transactions
on Visualization and Computer Graphics, 1(2):99–108, 1995.

[26] D. Merrill and A. Grimshaw. High Performance and Scalable Radix Sort-
ing: A case study of implementing dynamic parallelism for GPU comput-
ing. Parallel Processing Letters, 21(02):245–272, 2011.

[27] T. Ritschel, T. Grosch, C. Dachsbacher, and J. Kautz. State of the art in
interactive global illumination.Computer Graphics Forum, 31(31):160–
188, 2012.

[28] T. Ropinski, C. D̈oring, and C. Rezk Salama. Advanced Volume Illu-
mination with Unconstrained Light Source Positioning.IEEE Computer
Graphics and Applications, 2010.

[29] T. Ropinski, C. D̈oring, and C. Salama. Interactive volumetric lighting
simulating scattering and shadowing. InPaci�cVis (IEEE Paci�c Visual-
ization), 2010.

[30] T. Ropinski, J. Meyer-Spradow, S. Diepenbrock, J. Mensmann, and
K. Hinrichs. Interactive volume rendering with dynamic ambient oc-
clusion and color bleeding.Computer Graphics Forum (Proceedings of
Eurographics 2008), 27(2):567–576, 2008.

[31] C. Salama. Gpu-based monte-carlo volume raycasting. InPaci�c Con-
ference on Computer Graphics and Applications, pages 411–414, 2007.

[32] M. Schott, V. Pegoraro, C. Hansen, K. Boulanger, and K. Bouatouch. A
directional occlusion shading model for interactive direct volume render-
ing. Computer Graphics Forum (Proceedings of EG/IEEE Symposium on
Visualization 2009), 28(3):855–862, 2009.

[33] E. Sund́en, A. Ynnerman, and T. Ropinski. Image plane sweep volume il-
lumination.IEEE Transactions on Visualization and Computer Graphics,
17(12):2125–2134, 2011.

[34] V. �Solt́eszov́a, D. Patel, S. Bruckner, and I. Viola. A multidirectional
occlusion shading model for direct volume rendering.Computer Graph-
ics Forum (Eurographics/IEEE VGTC Symp. on Visualization 2010),
29(3):883–891, 2010.

